Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(8): 9309-9320, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38434824

RESUMO

Zirconia-alumina-supported Ni (5Ni/10ZrO2+Al2O3) and Sr-promoted 5Ni/10ZrO2+Al2O3 are prepared, tested for carbon dioxide (CO2) methanation at 400 °C, and characterized by X-ray diffraction, X-ray photoelectron spectroscopy, surface area and porosity, infrared spectroscopy, and temperature-programmed reduction/desorption techniques. The CO2 methanation is found to depend on the dispersion of Nickel (Ni) sites as well as the extent of stabilization of CO2-interacted species. The Ni active sites are mainly derived from the reduction of 'moderately interacted NiO species'. The dispersion of Ni over 1 wt % Sr-promoted 5Ni/10ZrO2+Al2O3 is 1.38 times that of the unpromoted catalyst, and it attains 72.5% CO2 conversion (against 65% over the unpromoted catalyst). However, increasing strontium (Sr) loading to 2 wt % does not affect the Ni dispersion much, but the concentration of strong basic sites is increased, which achieves 80.6% CO2 conversion. The 5Ni4Sr/10ZrO2+Al2O3 catalyst has the highest density of strong basic sites and the highest concentration of active sites with maximum Ni dispersion. This catalyst displays exceptional performance and achieves approximately 80% CO2 conversion and 70% methane (CH4) yield for up to 25 h on steam. The unique acidic-basic profiles composed of strong basic and moderate acid sites facilitate the sequential hydrogenation of formate species in the COx-free CH4 route.

2.
Nanomaterials (Basel) ; 13(18)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37764578

RESUMO

Herein, Fe3O4 core-TiO2/mesoSiO2 and Fe3O4 core-mesoSiO2/TiO2 double shell nanoparticles were prepared by first (R1) and second (R2) routes and applied for the removal of methylene blue. The reported adsorption capacities for R1-0.2, R1-0.4 and R2 samples were 128, 118 and 133 mg.g-1, respectively, which were obtained after 80 min as equilibrium contact time, and pH of 6 using a methylene blue concentration of 200 ppm. The adsorption of methylene blue using the prepared Fe3O4 core-meso SiO2/TiO2 double shell was analyzed by kinetic and isotherms models. In addition, thermodynamic investigations were applied to assess the spontaneous nature of the process. The obtained results confirmed that the pseudo-second order model is well fitted with the adsorption data and the Freundlich-isotherm assumption suggested a multilayer adsorption mechanism. In addition, results of the thermodynamic investigation indicated that ΔG° was in the range of -2.3 to -6.8 kJ/mol for R1-0.2, -2.8 to -6.3 kJ/mol for R1-0.4 and -2.0 to -5.2 kJ/mol for R2. In addition, the ΔH° and ΔS° values were found in the range of 26.4 to 36.19 kJ.mol-1 and 94.9 to 126.3 Jmol-1 K-1, respectively. These results confirm that the surfaces of Fe3O4 core-mesoSiO2/TiO2 and Fe3O4 core-TiO2/mesoSiO2 double shell exhibit a spontaneous tendency to adsorb methylene blue from the aqueous solutions. The achieved performance of Fe3O4 core-meso SiO2/TiO2 and Fe3O4 core-TiO2/meso SiO2 double shell as adsorbent for methylene blue removal will encourage future research investigations on the removal of a broad range of contaminants from wastewater.

3.
ACS Omega ; 8(8): 7626-7638, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36872962

RESUMO

The development of a sustainable process for heavy metal ion remediation has become a point of interest in various fields of research, including wastewater treatment, industrial development, and health and environmental safety. In the present study, a promising sustainable adsorbent was fabricated through continuous controlled adsorption/desorption processes for heavy metal uptake. The fabrication strategy is based on a simple modification of Fe3O4 magnetic nanoparticles with organosilica in a one-pot solvothermal process, carried out in order to insert the organosilica moieties into the Fe3O4 nanocore during their formation. The developed organosilica-modified Fe3O4 hetero-nanocores had hydrophilic citrate moieties, together with hydrophobic organosilica ones, on their surfaces, which facilitated the further surface coating procedures. To prevent the formed nanoparticles from leaching into the acidic medium, a dense silica layer was coated on the fabricated organosilica/Fe3O4 (OS/Fe3O4). In addition, the prepared OS/Fe3O4@SiO2 was utilized for the adsorption of cobalt(II), lead(II), and manganese(II) from the solutions. The data for the adsorption processes of cobalt(II), lead(II), and manganese(II) on OS/(Fe3O4)@SiO2 were found to follow the pseudo-second-order kinetic model, indicating the fast uptake of heavy metals. The Freundlich isotherm was found to be more suitable for describing the uptake of heavy metals by OS/Fe3O4@SiO2 nanoparticles. The negative values of the ΔG° showed a spontaneous adsorption process of a physical nature. The super-regeneration and recycling capacities of the OS/Fe3O4@SiO2 were achieved, comparing the results to those of previous adsorbents, with a recyclable efficiency of 91% up to the seventh cycle, which is promising for environmental sustainability.

4.
Materials (Basel) ; 16(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36837301

RESUMO

In this work, carbon microspheres (CMs) were prepared by hydrothermal carbonization (HTC) of inedible crystallized date palm molasses. The effects of temperature and reaction time on the prepared materials were studied. Experiments were carried out at different temperatures (180, 200, 230 and 250 °C) with reaction times ranging from 2 to 10 h. It was found that temperature had the greatest influence on the mass yield of the CMs. No solid products were observed at a temperature of 180 °C and a reaction time less than 2 h. The highest yield was found to be 40.4% at 250 °C and a reaction time of 6 h. The results show that the CMs produced were approximately 5-9 µm in diameter. The results also show that the largest diameter of the CMs (8.9 µm) was obtained at a temperature of 250 °C and a reaction time of 6 h. Nonetheless, if the reaction time was extended beyond 6 h at 250 °C, the CMs fused and their shapes were deformed (non-spherical shapes). The synthesized materials were characterized using Scanning Electron Microscopy (SEM), Fourier Transform Infrared (FTIR), Branuer-Emmett-Teller (BET) and thermogravimetric analysis (TGA). BET surface areas for the four samples were found to be less than 1 m2/g. The methylene blue adsorption studies indicated that the equilibrium adsorption capacity was reached after 15 min, with a maximum adsorption capacity of 12 mg/g. The recycling of date palm molasses (a known processed waste) to generate a useable carbon microsphere represents a beneficial step in the application of sustainable processing industries in the Middle East.

5.
Antioxidants (Basel) ; 11(7)2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35883906

RESUMO

Propolis (bee glue) is a complex, phyto-based resinous material obtained from beehives. Its chemical and biological properties vary with respect to bee species, type of plants, geographical location, and climate of a particular area. This study was planned with the aim of determining the chemical composition and to investigate various properties (against oxidants and microbes) of different extracts of Saudi propolis collected from Arabian honey bee (Apis mellifera jemenitica) colonies headed by young queens. Chemical analysis of propolis extracts with different solvents, i.e., ethyl acetate (Eac), methanol (Met), butanol (BuT), and hexane (Hex) was done through colorimetry for the total phenolic content (TPC) and total flavonoid content (TFC) evaluation. For separation and extensive characterization of the Met extract, chromatography and 1H NMR were deployed. Six different microorganisms were selected to analyze the Saudi-propolis-based extract's antimicrobial nature by measuring zones of inhibition (ZOI) and minimum inhibitory concentration (MIC). Molecular docking was done by utilizing AutodDock, and sketching of ligands was performed through Marvin Chem Sketch (MCS), and the resultant data after 2D and 3D clean were stored in .mol format. The highest TFC (96.65 mg quercetin equivalents (QE)/g of propolis) and TPC (325 mg gallic acid equivalents (GAE)/g of propolis) were noted for Met. Six familiar compounds were isolated, and recognition was done with NMR. Met extract showed the greatest 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) free radical scavenging activity and Ferric Reducing Antioxidant Power (FRAP). Met showed max microbial activity against Staphylococcus aureus (ZOI = 18.67 mm, MIC = 0.625 mg/mL), whereas the minimum was observed in Hex against E. coli (ZOI = 6.33 mm, MIC = 2.50 mg/mL). Furthermore, the molecular docking process established the biological activity of separated compounds against HCK (Hematopoietic cell kinase) and Gyrase B of S. aureus. Moreover, the stability of protein-ligand complexes was further established through molecular dynamic simulation studies, which showed that the receptor-ligand complexes were quite stable. Results of this research will pave the way for further consolidated analysis of propolis obtained from Arabian honey bees (A. m. jemenitica).

6.
Front Chem ; 8: 317, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32411666

RESUMO

A leading method for hydrogen production that is free of carbon oxides is catalytic methane decomposition. In this research, Fe and Fe-Ni supported catalysts prepared by the wet impregnation method were used in methane decomposition. The effects of doping the parent support (ZrO2) with La2O3 and WO3 were studied. It was discovered that the support doped with La2O3 gave the best performance in terms of CH4 conversion, H2 yield, and stability at the test condition, 800°C and 4,000-ml h-1 g-1 cat. space velocity. The addition of Ni significantly improved the performance of all the monometallic catalysts. The catalysts were characterized by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), temperature-programmed reduction/oxidation (TPR/TPO), thermogravimetric analyzer (TGA), and microscopy (SEM and Raman) techniques. Phases of the different forms of Fe were identified by XRD. BET showed a drastic decline in the specific surface area of the catalysts with respect to the supports. TPR profiles revealed a progressive change in the valency of Fe in its combined form to the zero valence-free metal. The La2O3-promoted support gave the best performance and maintained good stability during the time on stream.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...